

Lactocitrate®

1st lactate buffered dialysis fluid for RCA

Solution characteristics

- Fluid for application with 4% trisodium citrate (4%TSC), tested with CVVHD, CVVH and CVVHDF
- Calcium-free fluid for use with regional citrate anticoagulation (RCA)
- Reduced concentration of Na⁺
- Lactate buffer
- Reduced buffer base to prevent metabolic alkalosis
- Magnesium to compensate losses during citrate CRRT
- Phosphate for prevention of hypophosphataemia
- Single chamber bag guarantees concentration stability
- Cheap, reducing cost of CRRT + RCA below the level of CRRT with heparin anticoagulation

Advantages of Lactocitrate compared to other solutions designed for RCA:

- Oustanding tolerance, no alkalosis nor hypernatremia were detected with dosage of 1500-3000 ml/h, parallel blood flow of 100-150 ml/min and 4%TSC (median 200-300 ml/h) providing postfilter Ca²⁺<0.4 mmol/l. Higher blood flow up to 150 ml/min enables higher ultrafiltration and postdilution than blood flow restricted to 100 ml/min.
- Combination of 4%TSC with calcium-free lactate dialysis/substitution fluid = acceptable bioenergetic gain of 1350–2000 kJ/24h, without impact on insuline resistance.
- Up to 2000-3000 ml/h a low plasmatic lactate level (median 1.9 mmol/l) is preserved. Arterial lactate remains a marker of stress metabolism and its level correlates with significant hypovolaemia and/or decreases of cardiac index.

- Magnesium without a need for substitution
- Phosphorus without a need for replenishment
- Single chamber polypropylene bag, concentration stability during storage
- Cost saving, one day expenses (citrate+calcium+monitoring+fluids = median 200 EUR) for RCA + Lactocitrate are lower than for RCA + bicarbonate calcium-free fluid (243 EUR). Citrate anticoagulation with Lactocitrate is cheaper than heparin + bicarbonate fluid (221 EUR).

Lactocitrate[®]

Concentration of ion and glucose

Na ⁺	130	mmol/l
K+	2.0	mmol/l
Mg ²⁺	1.5	mmol/l
H ₂ PO ₄ ⁻	1.0	mmol/l
Cl ⁻	116	mmol/l
Lactate	18	mmol/l
Glucose	5.6	mmol/l
рН	5.6	
theoretical osmolality	274	mosmol/l

Lactocitrate®

1st lactate buffered dialysis fluid for RCA (patent pending)

Lactocitrate is a dialysis fluid designed for continuous renal replacement therapy (CRRT) with regional citrate anticoagulation (RCA). It is administered preferrably with 4% trisodium citrate (4%TSC) and parallel substitution of calcium (CaCl₂).

Indication

Indication to Lactocitrate is continuous renal replacement therapy with regional citrate anticoagulation. The elevated arterial lactate level is not a contraindication to lactate buffered fluid if a patient is stabilized and a balance between systemic oxygen delivery and consumption is maintained.

Method setting

If not indicated otherwise the expected efficiency of CRRT is reached with dosage of 1.5 to 2.5 l/h of dialysis fluid in adults, i.e. 20-25 ml/kg.h. Adequate blood flow is between 90-120 ml/min. In case of higher blood flows up to 150 ml/min and related higher dosage of 4%TSC the expected dosage of Lactocitrate is between 2.0 and 3.0 l/h.

Lactocitrate does not posses side effects when correctly administered however, its higher dosage above 2.5 l/h may increase plasmatic lactate concentration which is typically at the upper limit of normal or mildly ele-

References

- 1) Balik M, Zakharchenko M, Otahal M, et al: Quantification of systemic dose of substrates for intermediate metabolism during citrate anticoagulation of continuous renal replacement therapy. Blood Purif 2012, 33: 80-87.
- Balik M, Zakharchenko M, Leden P, et al.: Bioenergetic gain of citrate anticoagulated continuous hemodiafiltration-a comparison between 2 citrate modalities and unfractionated heparin. J Crit Care 2013, 28(1): 87-95.
- Balik M, Zakharchenko M, Matejovic M: Citrate anticoagulation of renal replacement therapy: Beyond filter life and patient's safety. Yearbook

GML Health Care portfolio of products for RCA

Product	Volume	
Natrium citricum 4 %	250 ml	
Natrium citricum 4 %	1000 ml	
Natrium citricum 4 %	2000 ml	
Natrium citricum 14,7 %	500 ml	
Natrium citricum 35,3 %	250 ml	
Citralysat K0	5000 ml	
Citralysat K2	5000 ml	
Citralysat K4	5000 ml	
Citralysat PLUS K2	5000 ml	
Citralysat PLUS K4	5000 ml	
Lactocitrate	5000 ml	

of Intensive Care Medicine, Springer Verlag, March 2013, pp. 741-754.

- 4) Balik M, Zakharchenko M, Leden P, et al: Tolerance and metabolic effects of a novel lactate buffered dialysis and substitution fluid for citrate anticoagulated continuous renal replacement therapy: Intensive Care Med 2013, 39(S2): 377 (abstract).
- 5) Zakharchenko M, Balik M, Leden P, et al: Citrate anticoagulated continuous haemodiafiltration: Focus on ionised magnesium. Intensive Care Med 2011, 37, S336 (abstract).

www.gml-dialyza.cz

